Subscribe free to our newsletters via your
. Moon News .




MOON DAILY
A new view of the moon's formation
by Staff Writers
College Park, MD (SPX) Apr 12, 2015


illustration only

Within the first 150 million years after our solar system formed, a giant body roughly the size of Mars struck and merged with Earth, blasting a huge cloud of rock and debris into space. This cloud would eventually coalesce and form the moon.

For almost 30 years, planetary scientists have been quite happy with this explanation--with one major exception. Although this scenario makes sense when you look at the size of the moon and the physics of its orbit around Earth, things start to break down a little when you compare their isotopic compositions--the geological equivalent of a DNA "fingerprint." Specifically, Earth and the moon are too much alike.

The expectation has long been that the moon should carry the isotopic "fingerprint" of the foreign body, which scientists have named Theia. Because Theia came from elsewhere in the solar system, it probably had a much different isotopic fingerprint than early Earth.

Now, a team of scientists at the University of Maryland has generated a new isotopic fingerprint of the moon that could provide the missing piece of the puzzle. By zeroing in on an isotope of Tungsten present in both the moon and Earth, the UMD team is the first to reconcile the accepted model of the moon's formation with the unexpectedly similar isotopic fingerprints of both bodies.

The results suggest that the impact of Theia into early Earth was so violent, the resulting debris cloud mixed thoroughly before settling down and forming the moon. The findings appear in the April 8, 2015 advance online edition of the journal Nature.

"The problem is that Earth and the moon are very similar with respect to their isotopic fingerprints, suggesting that they are both ultimately formed from the same material that gathered early in the solar system's history," said Richard Walker, a professor of geology at UMD and co-author of the study. "This is surprising, because the Mars-sized body that created the moon is expected to have been very different. So the conundrum is that Earth and the moon shouldn't be as similar as they are."

Several different theories have emerged over the years to explain the similar fingerprints of Earth and the moon. Perhaps the impact created a huge cloud of debris that mixed thoroughly with the Earth and then later condensed to form the moon. Or Theia could have, coincidentally, been isotopically similar to young Earth. A third possibility is that the moon formed from Earthen materials, rather than from Theia, although this would have been a very unusual type of impact.

To tease out an explanation, Walker and his team looked to another well-documented phenomenon in the early history of the solar system. Evidence suggests that both Earth and the moon gathered additional material after the main impact, and that Earth collected more of this debris and dust. This new material contained a lot of Tungsten, but relatively little of this was of a lighter isotope known as Tungsten-182. Taking these two observations together, one would expect that Earth would have less Tungsten-182 than the moon.

Sure enough, when comparing rocks from the moon and Earth, Walker and his team found that the moon has a slightly higher proportion of Tungsten-182. The key, however, is how much.

"The small, but significant, difference in the Tungsten isotopic composition between Earth and the moon perfectly corresponds to the different amounts of material gathered by Earth and the moon post-impact," Walker said. "This means that, right after the moon formed, it had exactly the same isotopic composition as Earth's mantle."

This finding supports the idea that the mass of material created by the impact, which later formed the moon, must have mixed together thoroughly before the moon coalesced and cooled. This would explain both the overall similarities in isotopic fingerprints and the slight differences in Tungsten-182.

It also largely rules out the idea that the Mars-sized body was of similar composition, or that the moon formed from material contained in the pre-impact Earth. In both cases, it would be highly unlikely to see such a perfect correlation between Tungsten-182 and the amounts of material gathered by the moon and Earth post-impact.

"This result brings us one step closer to understanding the close familial relationship between Earth and the moon," Walker said. "We still need to work out the details, but it's clear that our early solar system was a very violent place."

In addition to Walker, study authors include UMD geology senior research scientist Igor Puchtel and former UMD geology postdoctoral researcher Mathieu Touboul, now at Ecole Normale Superieure de Lyon, France.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Maryland
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





MOON DAILY
Moon formed when young Earth and little sister collided
College Park, Md. (UPI) Apr 8, 2015
It's long been believed that Earth's moon was formed by a significant planetary collision with a Mars-like protoplanet called Theia. Now, a new study suggests the primordial protoplanet that crashed into a young Earth was quite similar in size and composition. "The Earth and the moon are not twins born from the same planet, but they are sisters in the sense that they grew up in the same ... read more


MOON DAILY
Mars' dust-covered glacial belts may contain tons of water

Team Returning Orbiter to Duty After Computer Swap

More evidence for groundwater on Mars

Scars on Mars from 2012 Rover Landing Fade - Usually

MOON DAILY
Saturn Spacecraft Returns to the Realm of Icy Moons

A new spin on Saturn's peculiar rotation

Titan's Atmosphere Created As Gases Escaped Core

Researchers study methane-rich plumes from Saturn's icy moon Enceladus

MOON DAILY
NASA Extends Campaign for Public to Name Features on Pluto

New Horizons Sampling 'Space Weather' on Approach to Pluto

Help Name New Features on Pluto

Name the features on Pluto and its moon Charon

MOON DAILY
Moon formed when young Earth and little sister collided

Will the moon's first inhabitants live in giant lava tubes?

Soft Landing on the Moon an Extraordinary Challenge

Stop blaming the moon

MOON DAILY
Optics, nanotechnology combined to create low-cost sensor for gases

Water makes wires even more nano

Light-powered gyroscope is world's smallest

Nanoscale worms provide new route to nano-necklace structures

MOON DAILY
New safety-related work on Orion by Orbital ATK

Space Launch System to Boost Science with Secondary Payloads

NASA Selects Companies to Develop Super-Fast Deep Space Engine

IXV test flight total success says operations manager

MOON DAILY
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

MOON DAILY
Special 3-D Delivery From Space to NASA's Marshall Space Flight Center

NASA Extends Lockheed Martin Contract To Prepare Critical Cargo For ISS

NASA drives future discoveries with new ISS information system

Cosmonauts Take Tablet Computer Into Space




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.