Subscribe to our free daily newsletters
  Moon News  

Subscribe to our free daily newsletters

NASA Team Studies CubeSat Mission to Measure Water on the Moon
by Lori Keesey for GSFC News
Greenbelt MD (SPX) Nov 10, 2017

NASA scientist Noah Petro has received funding to advance a CubeSat mission called the Mini Lunar Volatiles Mission, designed to draw a more complete picture of where water exists on the Moon. Behind him is a mosaic assembled from images taken by the Lunar Reconnaissance Orbiter.

A team of NASA scientists wants to draw a more complete picture of where water exists on the Moon and whether it migrates across the lunar surface, including in the permanently shadowed regions that haven't seen sunlight in perhaps a billion years or more.

The first hint of potential water at both lunar poles came in 1994, with the Clementine mission flown jointly by NASA and the Department of Defense. Since then, subsequent missions, such as Chandrayann-1, the Lunar Reconnaissance Orbiter, and the Lunar CRater Observation and Sensing Satellite, have detected three flavors of volatiles or chemicals that evaporate rapidly: a global layer of hydroxide and water that's just one molecule thick, subsurface polar water ice, and polar surface water frost.

Past Missions Altered Perspectives
"The remote detection of lunar volatiles, specifically water and hydroxide, has dramatically changed our perspective of a dry Moon to a wetter Moon, both within and on the surface," said scientist Noah Petro. "However, these missions were not able to draw a complete picture of the distribution and possible mobility of volatiles."

With funding from NASA's Planetary Science Deep Space SmallSat Studies, or PSDS3, program, Petro and his team, which also includes University of Hawaii researcher Paul Lucey as well as Goddard instrument experts, will study a CubeSat mission concept called the Mini Lunar Volatiles Mission, or MiLUV.

The six-unit MiLUV would detect water on the lunar surface using a laser spectrometer that traces its heritage to similar Goddard-developed lidar-type instruments built to map the topographies of Mars and the Moon.

"Understanding volatiles in the solar system is a major planetary-science objective for NASA," Petro said. "We believe that the best-suited instrument to answer where these volatiles exist and their possible movement is a laser spectrometer that measures surface reflectance at several wavelengths. The benefit of this approach is that by using an active instrument, we can measure in areas that are not illuminated."

Repackaging Existing Laser Spectrometer
With the funding, the team is studying the repackaging of an existing instrument concept, the Lunar Ice Lidar Spectrometer, or LILIS, to determine if it might fit onto a small satellite and performing an engineering study to show that the agency could successfully fly MiLUV, Petro added.

The instrument is an adaptation of successful planetary lidar systems flown on the Lunar Orbit Laser Altimeter and the Mercury Laser Altimeter. These instruments bounced laser light off the surfaces of the Moon and Mercury, respectively, and used the returning signal to map their topographies. "We want to expand the instrument's capabilities beyond topography," Petro said.

Unlike the previous instrument that used a single wavelength, LILIS would include a multi-band spectrometer. The laser would bounce light off the lunar surface and the spectrometer would analyze the reflected or returning signal to determine the presence of water and other volatiles.

Like all chemicals, water absorbs light at specific infrared wavelengths. By carefully tuning the instrument's detectors to those wavelengths - in this case, 1.6 and 3.0 microns - scientists would be able to detect and then analyze the level of water in the laser's vertical path. The more water along the light's path, the deeper the absorption lines.

Around-the-Clock Measurements
Because the instrument carries its own light source - the laser - the mission literally could operate day and night, regardless of sunlight conditions. This means MiLUV also could study the Moon's permanently shadowed regions, gathering a complete data set that would show how surface volatiles vary as a function of lunar time, if at all, Petro added.

"This is a focused science mission, ideal for a CubeSat mission," Petro said. "It directly addresses the science goal of understanding how the chemical and physical processes in our solar system operate, interact, and evolve. We're hopeful that our study will show this is a feasible mission."

Small satellites, including CubeSats, play a valuable role in the agency's exploration, science, technology and educational investigations. These miniature satellites provide a low-cost platform for NASA science missions, including planetary exploration, Earth observation, and fundamental Earth and space science. They are a cornerstone in the development of cutting-edge NASA technologies like laser communications, satellite-to-satellite communications and autonomous movement.

Russia locks up six for Moon flight simulation
Moscow (AFP) Nov 7, 2017
Three men and three women were sealed in an artificial spacecraft unit in Moscow on Tuesday in a simulation of a 17-day flight to the Moon, a preparation for long-term missions. The experiment is the first of several in the SIRIUS (Scientific International Research In a Unique terrestrial Station) programme, which over the course of five years will gradually increase the isolation experiment ... read more

Related Links
Lunar at NASA
Mars News and Information at
Lunar Dreams and more

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

How long can microorganisms live on Mars

NASA Opens $2 Million Third Phase of 3D-Printed Habitat Competition

Insight will carry over two million names to Mars

Opportunity Does a Wheelie and is Back on Solid Footing

Heating ocean moon Enceladus for billions of years

Powering Saturn's Active Ocean Moon

ASA Advances Instrument to Study the Plumes of Enceladus

Saturn's Radiation Belts: A Stranger to the Solar Wind

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Juno Aces 8th Science Pass of Jupiter, Names New Project Manager

NASA Moves Up Critical Crew Safety Launch Abort Test

Brazil's tech junkies seek healing at digital detox clinic

NanoRacks launches Full External Cygnus Deployer on OA-8 to ISS

The road to Orion's launch

Better, bolder printing with silicon nanostructures

Practical superconducting nanowire single photon detector highly efficient

Subset of carbon nanotubes poses cancer risk similar to asbestos in mice

Simple green synthesis is a breath of fresh air

The state of commercial spaceports in 2017

Orbital ATK Successfully Tests First Motor Case for Next Generation Launch Vehicle

Orbital ATK launches eighth cargo mission to space

Vega launches Earth observation satellite for Morocco

China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

Plasma from lasers can shed light on cosmic rays, solar eruptions

Leonardo tapped by British Royal Air Force for radar testing equipment

A new way to mix oil and water

Building better silk

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement