Subscribe to our free daily newsletters
  Moon News  

Subscribe to our free daily newsletters

The science behind the Lunar Hydrogen Polar Mapper mission
by Staff Writers
Tempe AZ (SPX) Jan 19, 2017

LunaH-Map, the Lunar Hydrogen Polar Mapper, will launch in September 2018. Its task will be to find water and ice at the south pole of the moon, and map the deposits.

Arizona State University's NASA mission to visit a metal asteroid is just beginning, but the first mission that marked the school as a major player in space exploration has been under way for more than a year.

LunaH-Map, the Lunar Hydrogen Polar Mapper, will launch in September 2018. Its task will be to find water and ice at the south pole of the moon, and map the deposits.

ASU Now spoke with principal investigator Craig Hardgrove, an assistant professor in the School of Earth and Space Exploration about the science behind the mission, what will be built on its discoveries, and why there isn't a hockey rink buried on the moon.

Why look for water and ice on the moon? It can be used for fuel and drinking water in the push to Mars, saving an enormous amount of space and payload weight on spacecraft.

"That's the geologic question we're trying to answer about the moon: how much (water and ice) is there on a moderate spatial scale, so we can send a rover and really get at how much water is there," Hardgrove said.

Scientists aren't sure about how water and ice appear on the moon. It is likely deposited by two things: solar wind or passing asteroids and comets. Protons from solar wind are implanted into the lunar surface, then they combine with an electron to form a hydrogen atom. The hydrogen atom binds with oxygen and forms hydroxyl atoms.

Asteroids and comets carry water. "Those are dirty ice balls, basically," Hardgrove said, carrying 50 to 80 percent water. As they get close to the sun, they shed water.

"Those could be passing by, depositing water on bodies like the moon," he said. "So maybe that's the explanation for why it's enriched in certain regions and not others."

LunaH Map will carry a neutron counter. As it flies over the south pole of the moon, it measures neutrons that leak from the moon's surface. There's a base number of counts you'd expect for a dry moon: around 50 parts per million water.

"Very, very dry," Hardgrove remarked. "At the pole, it's maybe 200, up to 500 parts per million and in some small regions we know that it's 5000 to 50,000 parts per million, it's really enriched. We just don't know exactly where those regions are."

No one knows where the hydrogen is, or how much of it is there. And is it all implanted by solar wind? It's an important geologic question. If it is, maybe the small amounts of hydrogen at the poles have moved around somehow, possibly by meteorite impacts. Maybe the moon's poles have moved throughout geologic time. Scientists aren't sure, but hydrogen gets remobilized and concentrated in permanently shadowed craters at the poles.

No one knows how much is there. Hardgrove suspects it's on the order of a couple hundred parts per million. There isn't a good answer for why you would get 5,000 parts per million or 50,000 parts per million. That's around five percent water - a lot for the moon. Certain parts of Mars have that much water - the north pole of Mars is pure ice - but the moon isn't Mars, and no one knows how that much water appears on the moon.

How would you find out whether the water came from an asteroid or comet, or somehow was inherent to the moon? A rover would have to collect samples and analyze isotope ratios with a mass spectrometer.

The maps LunaH Map will create may be used by NASA to decide where to land a rover to do exactly that.

"We're talking about identifying regions that are several kilometers wide where hydrogen is enriched," Hardgrove said. "And then NASA could plan for future missions where you want to land your rover, because now we're on the scale of the landing ellipse. NASA will know that the hydrogen is somewhere in that patch of ground."

That mission, called Resource Prospector, is already in the planning stages. It's going to have to be one of the toughest rovers ever built, because it's going to dip its toe into one of the coldest places in the solar system, places which have never, ever seen sunlight. Think as low as -400 degrees below Fahrenheit.

Electronics and hardware may not be able to survive. The rover will carry the same instrument LunaH Map will: a neutron detector. What the rover would do is land in the illuminated areas and do what NASA calls "toe dips" into the darkness.

"Resource Prospector could toe dip in, scoop and come back out and do the analysis," Hardgrove said. "But they're worried that if they take that sample out, all of the water, if it's in there, it's just going to sublimate immediately. So then they have to do their analysis in the dark to figure out how much is actually there, or seal it up somehow. It's a difficult problem to figure out how to assess what's really down there, just because it's some of the coldest parts of the solar system."

Any ice down there would be bound up somehow with the regolith, the loose dust, dirt, and rock covering the bedrock. It would have to be extracted for human use with some kind of refining process. It won't be like chipping ice off a cliff and melting it on a winter camping trip. And, while golf has been played on the moon, it is unlikely hockey will enjoy the same privilege.

"We don't think it's like an ice skating rink or anything," Hardgrove said. "That would be a very different method for moon formation than anything we're familiar with."

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Arizona State University
Mars News and Information at
Lunar Dreams and more

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Eugene Cernan, last man to walk on moon, dead at 82
Washington (AFP) Jan 16, 2017
US astronaut Eugene Cernan, the last man to set foot on the moon, died Monday at age 82, NASA and his family announced. Cernan was the spacecraft commander of Apollo 17 - his third space flight and the last scheduled US manned mission to the moon - in December 1972. "We are saddened by the loss of retired NASA astronaut Gene Cernan, the last man to walk on the moon," the US space agenc ... read more

Long Eclipse Avoidance Manoeuvres Performed Successfully on MOM Spacecraft

Microbes could survive thin air of Mars

Mars rover Opportunity takes a drive up a steep slope

Mars Rover Curiosity Examines Possible Mud Cracks

Cassini captures stunning view of Saturn moon Daphnis

Catching Cassini's call

Huygens: 'Ground Truth' From an Alien Moon

NASA image showcases Saturn's sun-soaked north pole

Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope

NASA to rely on Soyuz for ISS missions until 2019

Mister Trump Goes to Washington

Lomonosov Moscow State University to Launch 'Space Department' in 2017

French, US astronauts install batteries outside space station

Creating atomic scale nanoribbons

New research helps to meet the challenges of nanotechnology

Lighting up ultrathin films

Zeroing in on the true nature of fluids within nanocapillaries

When One launch is not enough: SpaceX Return To Flight

Airbus Safran Launchers in 2016: we keep our promises

2017 Rocket Campaign Begins in Alaska

India Defers Much-Awaited Heaviest Rocket Launch

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

Explaining how 2-D materials break at the atomic level

China's quantum communication satellite delivered for use

First European-built all-electric satellite EUTELSAT 172B getting ready to fly

The power of attraction

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement