Moon News  
MOON DAILY
Artemis I to launch first-of-a-kind deep space biology mission
by Gianine Figliozzi for ARC News
Moffett Field CA (SPX) Aug 12, 2022

File image of BioSentinel under fabrication.

Poised to launch on Artemis I from NASA's Kennedy Space Center in Florida, BioSentinel - a shoebox-sized CubeSat - will perform the first long-duration biology experiment in deep space. Artemis missions at the Moon will prepare humans to travel on increasingly farther and longer-duration missions to destinations like Mars, and BioSentinel will carry microorganisms, in the form of yeast, to fill critical gaps in knowledge about the health risks in deep space posed by space radiation.

Space radiation is like a demolition derby - on the nano scale. High-energy galactic cosmic rays and bursts of solar particles permeate deep space. These types of radiation can wreak havoc on electronics and living cells alike.

BioSentinel's main job is to monitor the vital signs of yeast to see how they fare when exposed to deep space radiation. Because yeast cells have similar biological mechanisms to human cells, including DNA damage and repair, scrutinizing yeast in space will help us better understand the risks of space radiation to humans and other biological organisms and help us plan crewed exploration missions to the Moon and beyond. Specifically, BioSentinel will study yeast cell growth and metabolic activity after exposure to a high-radiation environment beyond low-Earth orbit.

BioSentinel is one of 10 secondary payloads - all of which are six-unit CubeSats - that have the rare opportunity to hitch a ride to deep space on Artemis I. These satellites are mounted within the Orion stage adapter aboard the Space Launch System (SLS) rocket. Once ejected into space, they will carry out science and technology investigations. Among this select group, BioSentinel is the only CubeSat to carry a life science experiment.

"BioSentinel is the first of its kind," said Matthew Napoli, BioSentinel project manager at NASA's Ames Research Center in California's Silicon Valley. "It will carry living organisms farther into space than ever before. That's really cool!"

Far Out
So far, the Apollo 17 mission to the Moon holds the record for the longest duration human deep space flight; the 1972 mission lasted 12.5 days, far shorter than future Mars missions that will take years to complete. Apollo-17 also carried NASA's most recent experiments to study terrestrial life in space beyond low-Earth orbit. No space biology experiment - nor astronaut - has traveled beyond the Earth-Moon system, BioSentinel's destination.

Within hours of launch, SLS will deploy BioSentinel in space. A few days later, the CubeSat will swing past the Moon and fly the rest of its six- to nine-month mission orbiting around the Sun. Once there, BioSentinel's team will periodically trigger week-long yeast studies. BioSentinel will beam the data to Earth via NASA's Deep Space Network using a radio developed by NASA's Jet Propulsion Laboratory in Southern California.

A novel biosensor instrument is a key component of BioSentinel's mission. The biosensor is a miniature biotechnology laboratory designed to measure how living yeast cells respond to long-term exposure to space radiation. At its core is a set of microfluidics cards - custom hardware that allows for the controlled flow of extremely small volumes of liquids. These cards provide a habitat for yeast and a way for scientists to observe them in real time.

BioSentinel's biosensor technology is based on microfluidics systems developed for prior CubeSat missions. The most recent precursor was NASA's E. coli Anti-Microbial Satellite, or EcAMSat, mission that flew in 2017. The satellite was deployed into low-Earth orbit from the International Space Station to study the genetic basis for how effectively antibiotics can combat bacteria in spaceflight.

A physical radiation detector instrument developed at NASA's Johnson Space Center in Houston runs alongside BioSentinel's biosensor. It characterizes and measures radiation, and its results will be compared to the biosensor's biological response. Data from identical sets of BioSentinel's instruments aboard the space station and in a lab at Ames will be used to check and compare the yeasts' responses in different gravity and radiation environments.

SmallSat Subsystems Get Smaller
In 2013, Ames launched a small satellite mission to the Moon, the Lunar Atmosphere and Dust Environment Explorer. Although LADEE didn't perform life science research, it helped pave BioSentinel's path forward. Much of BioSentinel's team worked on LADEE. They benefited with experience gained developing and operating a spacecraft mission near the Moon.

"The team wanted to have as much room for science payloads as possible aboard BioSentinel and the engineers delivered," said Napoli. "LADEE had more room for avionics. A big challenge was miniaturization."

LADEE was larger than a household refrigerator. BioSentinel's engineers crammed a lot of subsystems in a small volume. Its avionics are roughly the size and shape of a half-gallon carton of milk.

"Now we have a CubeSat bus - the subsystems that run the spacecraft - small enough to leave two-thirds of the volume inside the spacecraft for science payloads. This was definitely a big deal," said Napoli.

BioSentinel builds on Ames' history, combining the center's strengths in space biology research and small satellite technology. Ames has decades of experience studying life in space, including research aboard the space shuttle, the space station, and free-flying satellites. BioSentinel is funded by NASA's Exploration Systems Development Mission Directorate, and more than 100 engineers and scientists worked on the project. Their contributions will help advance NASA's goal of protecting astronaut health and performance during future deep space exploration missions.


Related Links
BioSentinel at NASA
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
One more clue to the Moon's origin
Zurich, Switzerland (SPX) Aug 11, 2022
Humankind has maintained an enduring fascination with the Moon. It was not until Galileo's time, however, that scientists really began study it. Over the course of nearly five centuries, researchers put forward numerous, much debated theories as to how the Moon was formed. Now, geochemists, cosmochemists, and petrologists at ETH Zurich shed new light on the Moon's origin story. In a study just published in the journal, Science Advances, the research team reports findings that show that the Moon inherite ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
Harvesting resources on Mars with plasmas

NASA explains strange stringy object photographed by Perseverance rover

Series Futuristic Space Themed Centers

Mars model provides method for landing humans on Red Planet

MOON DAILY
Lowell Observatory points telescopes at Saturn during closest annual approach

SwRI researcher shows how elliptical craters could shed light on age of Saturn's moons

MOON DAILY
Underwater snow gives clues about Europa's icy shell

Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

MOON DAILY
Russian spacewalk cut short due to issue with suit

US should end ISS collaboration with Russia

Voyager logs 45 years in space as NASA's longest mission to date

Track NASA's Artemis I mission in real time

MOON DAILY
Towards stable, sustained Raman imaging of large samples at the nanoscale

A mirror tracks a tiny particle

MOON DAILY
NASA's new rocket on launchpad for trip to Moon

NASA moves up launch of massive moon rocket

Rocket Lab to launch 150th satellite with upcoming Synspective SAR launch

China's commercial rocket CERES-1 Y3 launches three satellites

MOON DAILY
Shenzhou XIV astronauts to conduct their first spacewalk in coming days

Harvest from heavenly breeding

Chinese space-tracking ship docks at Sri Lanka's Hambantota port

Chinese commercial carrier rocket Smart Dragon-3 completes ground tests

MOON DAILY
Software-defined satellite enters commercial service

Matter at extreme temperature and pressure turns out to be remarkably simple and universal

Wobbling droplets in space confirm late professor's theory

Pitt is the only university in the U.S. with this giant 3D printer for metal









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.