![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Lori Keesey for GSFC News Greenbelt MD (SPX) Mar 13, 2019
NASA scientists, engineers, and technologists are preparing for a new era of human exploration at the Moon, which includes a new launch system, capsule, and lunar-orbiting outpost that will serve as the jumping-off point for human spaceflight deeper into the Solar System. NASA's Goddard Space Flight Center in Greenbelt, Maryland, is playing a vital role in these initiatives, particularly in the areas of communications and instrument development as evidenced by the recent award of five proposals under NASA's Development and Advancement of Lunar Instrumentation (DALI) to advance spacecraft-based instrument for use in lunar-landing missions. The technologies needed for sustainable exploration at the Moon will have to be powerful, multipurpose, and fast, said Jake Bleacher, Chief Scientist for the Human Exploration and Operations Mission Directorate.
Transition to Laser Communications "Houston may have broadcast Neil Armstrong's first words, but they had to first come through Goddard's communications hub," said Noah Petro, the project scientist on the Lunar Reconnaissance Orbiter, or LRO, which has thoroughly mapped the lunar surface - data that will inform future Moon landings. Radio frequency (RF)-based systems have historically consisted of a vast network of ground antennas and land lines, and more recently NASA's Tracking and Data Relay Satellites, or TDRS. These systems are giving way to optical or laser communications. Although radio-based systems will continue playing a role, laser communications will be able to support the demand for high-definition video and increased data loads. NASA also plans to add laser communication capabilities on next-generation relay satellites in geosynchronous orbit - similar to the radio-based TDRS constellation -. "We're working to develop the next-generation of relay satellites that provide optical services," said Dave Israel, a communications architect for Goddard's Exploration and Space Communications division. To demonstrate an operational laser communications system, Goddard is expected to launch the Laser Communications Relay Demonstration, or LCRD, mission aboard a U.S. Air Force spacecraft that will operate 22,000 miles above Earth's surface in geosynchronous orbit. Over the mission's lifespan, LCRD will relay data encoded onto beams of infrared light, which is invisible to the human eye, between two Earth terminals in California and Hawaii. In 2021, NASA is expected to demonstrate the first fully operational end-to-end laser communications system, called ILLUMA-T, on the International Space Station. There, the Goddard-developed technology will serve as a laser communications terminal for the space station, communicating data from low-Earth orbit to the ground through the LCRD relay. This will demonstrate the potential for laser communications at rates that are 10 to 100 times better than radio-frequency systems, using less power and mass. NASA will later fly crew aboard the Orion spacecraft to travel around the Moon and back with the Goddard-developed Optical to Orion Communications System, or O2O, to provide high-speed data and high-definition video streaming during the mission. After the initial flight, Goddard technologists expect to add more laser communications terminals on future exploration missions, including a terminal on Gateway.
The New Normal: Multipurpose Scientific Instruments NASA's Gateway in orbit around the Moon will be an outpost to explore the lunar surface, conduct experiments, and prepare for spaceflights to more distant destinations, and instruments that can be used for multiple purposes will be important to optimizing potential science and exploration. "Our job is to think of other ways that a science instrument could be used," Bleacher said. An example of this multipurpose philosophy is the Goddard-developed Neutron star Interior Composition Explorer, or NICER, as well as a multifunctional sensor platform now under development, Bleacher said. NICER is designed primarily to study neutron stars, but it also carries built-in software that uses timing data from pulsing neutron stars to stitch together autonomous navigational solutions, similar to how the Global Positioning System, widely known as GPS, provides positioning, navigation, and timing services to users on Earth. This technology, demonstrated in an experiment called Station Explorer for X-ray Timing and Navigation Technology, or SEXTANT, provides a new option for deep space navigation that could work in concert with existing spacecraft-based radio and optical systems. This year, NICER Principal Investigator Keith Gendreau and his team are expected to showcase yet another potentially groundbreaking technology with the NICER payload - X-ray communications, or XCOM, in space. Although very early in its development, XCOM could usher in the next generation of communications technologies. "NICER is the model we want to apply to everything," Bleacher said. "My goal is to maximize the time of use for any technology we develop. It's a multipurpose tool and finding all the ways we can use it is where exploration gets interesting." NASA is going to the Moon and on to Mars, in a measured, sustainable way. The direction from Space Policy Directive-1 builds on the hard work NASA is doing on its SLS and Orion spacecraft, agency efforts to enable commercial partners, its work with international partners at the International Space Station in low-Earth orbit, and what NASA learns from its current robotic missions at the Moon and Mars. For more Goddard technology news please visit here
![]() ![]() Lunar water molecules hop as surface temperature increases Tucson AZ (SPX) Mar 11, 2019 Small amounts of water are attached to lunar grains on the dayside of the Moon and migrate around depending on surface temperature, as reported in a new paper by Planetary Science Institute Senior Scientist Amanda Hendrix. Data from NASA's Lunar Reconnaissance Orbiter (LRO) shows that lunar water molecules can adhere to surface grains at night and through much of the day, and migrate around when the temperature reaches its peak at mid-day, says a new paper in Geophysical Research Letters titled "D ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |