Moon News  
MOON DAILY
HSE University researchers discover what happens on the bright side of the moon
by Staff Writers
Moscow, Russia (SPX) Feb 25, 2022

stock illustration only

Researchers from HSE University have developed a mathematical model that explains the levitation of charged dust particles over the sunlit lunar surface for almost any latitude. For the first time, the model takes into account the Earth's magnetotail-a particular area around our planet. The research data is important for planning the Luna-25 and Luna-27 space missions. The study was published in Physics of Plasmas.

In space, the Moon is surrounded by plasma (ionized gas), which contains solid-matter dust particles. On the lunar surface, dust particles, impacted by solar wind photons, electrons and ions get a positive charge. Their interaction with the positively charged lunar surface causes them to rebound, move and make up the dusty plasma.

Due to these factors, researchers might assume that lunar dusty plasmas evolve only above part of the lunar surface (around latitudes over 76 ). But it is expected that dusty plasmas may be observed above the whole sunlit part of the Moon. The paper's authors developed a physical-mathematical model of dust plasma motion in which the impact of Earth's magnetotail plays an important role.

Earth's magnetosphere evolves due to the interaction that the planet's magnetic field has with charged particles from space. Impacted by the magnetic field, for example, solar wind particles deviate from their initial trajectory and make up an area around the planet. It is asymmetrical: on the day side, it achieves the size of 8-14 Earth radiuses, and on the night side, it is extended and makes up a magnetotail, which is several hundred Earth radii-long.

During about one-fourth of its orbit, the Moon is in Earth's magnetotail, which impacts particles' movement along the meridian: impacted by the magnetic field, they start moving from the polar area to the equator.

The particles are also impacted by gravitation and electrostatic forces. The first attracts the dust grain to the surface, while the other repels it. This leads to vertical oscillation of particles.

Following this, particles transit into a condition of levitation. The researchers explain this effect by long sun days on the Moon: almost 15 Earth days. Over this time period, the process of particle oscillation fades away, and they have enough time to transfer into levitation. According to researchers, opposite phenomena are also observed. For example, on Martian moons, Phobos and Deimos, the time of dust grain oscillation dying out is longer than the light day, which is why they do not have enough time to transfer into levitating condition.

Sergey Popel, Head of the Laboratory of Dusty Plasma Processes in Space Objects, Space Research Institute of the RAS

'Luna-25 and Luna-27 are under preparation today, and they will study the properties of dust and dusty plasmas near the lunar surface. To make them successful, preliminary research is essential. Today we used a simplified approach to explain the transition of dust above the lunar surface taking into account the magnetic fields in Earth's magnetotail. In future studies, it will be necessary to additionally take into account the axial tilt and the inclination of the orbit to the ecliptic plane for both the Earth and the Moon, as well as to consider more accurate parameters of the magnetotail plasma.'

Research Report: "Dust dynamics in the lunar dusty plasmas: Effects of magnetic fields and dust charge variations"


Related Links
National Research University Higher School of Economics
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
NASA opens second phase of $5 Million Lunar Power Prize Competition
Huntsville AL (SPX) Feb 24, 2022
Under Artemis, NASA plans to return to the Moon using innovative technologies to explore more of the lunar surface than ever before. This will require lunar surface systems that can deliver continuous, reliable power to support mining and construction, research activities, and human habitation. The newest phase of NASA's Watts on the Moon Challenge offers up to $4.5 million in prizes to design, build, and demonstrate a prototype that addresses technology gaps in power transmission and energy stora ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
Ch'al-Type Rocks at Santa Cruz

Sols 3396-3397: Sediment Before the Pediment

Sols 3398-3400: The Road Ahead

First Multiple-Sol Drive

MOON DAILY
Saturn's High-Altitude Winds Generate Extraordinary Aurorae, Study Finds

SwRI scientist uncovers evidence for an internal ocean in small Saturn moon

MOON DAILY
New Horizons team puts names to the places on Arrokoth

NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter

Juno and Hubble data reveal electromagnetic 'tug-of-war' lights up Jupiter's upper atmosphere

Oxygen ions in Jupiter's innermost radiation belts

MOON DAILY
NASA exploring ways to keep ISS afloat without Russian help: official

US-Russia tensions spill into space, but ISS safe -- for now

Astronaut Matthias Maurer marks his first 100 days in space

Tycoons bound for ISS aren't tourists, insists space company

MOON DAILY
Ring my string: Building silicon nano-strings

Nanotube films open up new prospects for electronics

Using the universe's coldest material to measure the world's tiniest magnetic fields

Self-assembling and complex, nanoscale mesocrystals can be tuned for a variety of uses

MOON DAILY
SpaceX Axiom crew nears final training for first all-private mission to ISS

Rocket Lab selects Virginia for Neutron launch pad and manufacturing complex

New rocket to be partially reusable

Rocket Lab launches 2nd satellite for the Synspective SAR constellation

MOON DAILY
China establishes deep space exploration laboratory

China to make 6 human spaceflights, rocket's maiden flight in 2022: blue book

China welcomes cooperation on space endeavors

China Focus: China to explore lunar polar regions, mulling human landing: white paper

MOON DAILY
PPM partners with Aston Uni to develop game-changing satcom technology

Northrop Grumman awarded US Space Force contract for deep-space advanced radar

New imager microchip helps devices bring hidden objects to light

Using artificial intelligence to find anomalies hiding in massive datasets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.