Moon News  
MOON DAILY
Metals in lunar craters provide new insights to its origin
by Staff Writers
Los Angeles CA (SPX) Jul 02, 2020

Stock image of the Schrodinger Lunar Impact Basin.

Life on Earth would not be possible without the Moon; it keeps our planet's axis of rotation stable, which controls seasons and regulates our climate. However, there has been considerable debate over how the Moon was formed.

The popular hypothesis contends that the Moon was formed by a Mars-sized body colliding with Earth's upper crust which is poor in metals. But new research suggests the Moon's subsurface is more metal-rich than previously thought, providing new insights that could challenge our understanding of that process.

In a study published in Earth and Planetary Science Letters sheds new light on the composition of the dust found at the bottom of the Moon's craters. Led by Essam Heggy, research scientist of electrical and computer engineering at the USC Viterbi School of Engineering, and co-investigator of the Mini-RF instrument onboard NASA Lunar Reconnaissance Orbiter (LRO), the team members of the Miniature Radio Frequency (Mini-RF) instrument on the Lunar Reconnaissance Orbiter (LRO) mission used radar to image and characterize this fine dust.

The researchers concluded that the Moon's subsurface may be richer in metals (i.e. Fe and Ti oxides) than scientists had believed.

According to the researchers, the fine dust at the bottom of the Moon's craters is actually ejected materials forced up from below the Moon's surface during meteor impacts. When comparing the metal content at the bottom of larger and deeper craters to that of the smaller and shallower ones, the team found higher metal concentrations in the deeper craters.

What does a change in recorded metal presence in the subsurface have to do with our understanding of the Moon? The traditional hypothesis is that approximately 4.5 billion years ago there was a collision between Earth and a Mars-sized proto-planet (named Theia). Most scientists believe that that collision shot a large portion of Earth's metal-poor upper crust into orbit, eventually forming the Moon.

One puzzling aspect of this theory of the Moon's formation, has been that the Moon has a higher concentration of iron oxides than the Earth--a fact well-known to scientists. This particular research contributes to the field in that it provides insights about a section of the moon that has not been frequently studied and posits that there may exist an even higher concentration of metal deeper below the surface.

It is possible, say the researchers that the discrepancy between the amount of iron on the Earth's crust and the Moon could be even greater than scientists thought, which pulls into question the current understanding of how the Moon was formed.

The fact that our Moon could be richer in metals than the Earth challenges the notion that it was portions of Earth's mantle and crust that were shot into orbit. A greater concentration of metal deposits may mean that other hypotheses about the Moon's formation must be explored.

It may be possible that the collision with Theia was more devastating to our early Earth, with much deeper sections being launched into orbit, or that the collision could have occurred when Earth was still young and covered by a magma ocean. Alternatively, more metal could hint at a complicated cool-down of an early molten Moon surface, as suggested by several scientists.

According to Heggy, "By improving our understanding of how much metal the Moon's subsurface actually has, scientists can constrain the ambiguities about how it has formed, how it is evolving and how it is contributing to maintaining habitability on Earth."

He further added, "Our solar system alone has over 200 moons - understanding the crucial role these moons play in the formation and evolution of the planets they orbit can give us deeper insights into how and where life conditions outside Earth might form and what it might look like."

Wes Patterson of the Planetary Exploration Group (SRE), Space Exploration Sector (SES) at Johns Hopkins University Applied Physics Laboratory, who is the project's principal investigator for Mini-RF and a co-author of the study, added, "The LRO mission and its radar imager Mini-RF are continuing to surprise us with new insights into the origins and complexity of our nearest neighbor."

The team plans to continue carrying out additional radar observations of more crater floors with the Mini-RF experiment to verify the initial findings of the published investigation.

Research paper


Related Links
University Of Southern California
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
China's lunar rover travels about 463 meters on moon's far side
Beijing (XNA) Jun 30, 2020
China's lunar rover Yutu-2, or Jade Rabbit-2, has moved 463.26 meters on the far side of the moon to conduct scientific exploration of the virgin territory. Both the lander and the rover of the Chang'e-4 probe have just ended their work for the 19th lunar day, and switched to the dormant mode for the lunar night due to lack of solar power, the Lunar Exploration and Space Program Center of the China National Space Administration said on Sunday. China's Chang'e-4 probe, launched on Dec. 8, 201 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
SwRI scientists demonstrate speed, precision of in situ planetary dating device

Mud downpours might have formed some of Mars's ancient highlands

NASA takes first step to allow computers to decide what to tell us in search for life on Mars

How NASA's Mars Helicopter Will Reach the Red Planet's Surface

MOON DAILY
Evidence for Volcanic Craters on Saturn's Moon Titan

Saturn's Moon Titan drifting away faster than previously thought

Discovered a multilayer haze system on Saturn's Hexagon

Data from NASA's Cassini may explain Saturn's atmospheric mystery

MOON DAILY
Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze

MOON DAILY
Iconic '2001: A Space Odyssey' suit to hit auction block

Astronauts complete spacewalk outside space station

Orion's 'Twin' Completes Structural Testing for Artemis I Mission

First contract signed for tourist space walk reports Roscosmos

MOON DAILY
The smallest motor in the world

Crystalline 'nanobrush' clears way to advanced energy and information tech

Transporting energy through a single molecular nanowire

To make an atom-sized machine, you need a quantum mechanic

MOON DAILY
NASA Plans for More SLS Rocket Boosters to Launch Artemis Moon Missions

Russia's Roscosmos Reveals Cost of Angara Heavy-Lift Rocket for Defence Ministry

The rocket fired by Scrum

Virgin Galactic's SpaceShipTwo Completes Second Flight from Spaceport America

MOON DAILY
China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

MOON DAILY
Rocket Lab to launch Kleos Space data collecting payload

NXTCOMM unveils design of AeroMax flat panel antenna for airlines

Precise measurement of liquid iron density under extreme conditions

ThinKom demonstrates IFC antenna interoperability with LEO, MEO and GEO satellites









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.