Moon News  
MOON DAILY
Study suggests ice on lunar south pole may have more than one source
by Staff Writers
Providence RI (SPX) Oct 11, 2019

Shackleton Crater, the floor of which is permanently shadowed from the sun, appears to be home to deposits of water ice. A new study sheds light on how old these and other deposits on the Moon's south pole might be.

The discovery of ice deposits in craters scattered across the Moon's south pole has helped to renew interest in exploring the lunar surface, but no one is sure exactly when or how that ice got there. A new study published in the journal Icarus suggests that while a majority of those deposits are likely billions of years old, some may be much more recent.

Ariel Deutsch, a graduate student in Brown University's Department of Earth, Environmental and Planetary Sciences and the study's lead author, says that constraining the ages of the deposits is important both for basic science and for future lunar explorers who might make use of that ice for fuel and other purposes.

"The ages of these deposits can potentially tell us something about the origin of the ice, which helps us understand the sources and distribution of water in the inner solar system," Deutsch said. "For exploration purposes, we need to understand the lateral and vertical distributions of these deposits to figure out how best to access them. These distributions evolve with time, so having an idea of the age is important."

For the study, Deutsch worked with Jim Head, a professor at Brown, and Gregory Neumann from the NASA Goddard Space Flight Center. Using data from NASA's Lunar Reconnaissance Orbiter, which has been orbiting the Moon since 2009, the researchers looked at the ages of the large craters in which evidence for south pole ice deposits was found.

To date the craters, researchers count the number of smaller craters that have accrued inside the larger ones. Scientists have an approximate idea of the pace of impacts over time, so counting craters can help establish the ages of terrains.

The majority of the reported ice deposits are found within large craters formed about 3.1 billion years or longer ago, the study found. Since the ice can't be any older than the crater, that puts an upper bound on the age of the ice.

Just because the crater is old doesn't mean that the ice within it is also that old too, the researchers say, but in this case there's reason to believe the ice is indeed old. The deposits have a patchy distribution across crater floors, which suggests that the ice has been battered by micrometeorite impacts and other debris over a long period of time.

If those reported ice deposits are indeed ancient, that could have significant implications in terms of exploration and potential resource utilization, the researchers say.

"There have been models of bombardment through time showing that ice starts to concentrate with depth," Deutsch said. "So if you have a surface layer that's old, you'd expect more underneath."

While the majority of ice was in the ancient craters, the researchers also found evidence for ice in smaller craters that, judging by their sharp, well-defined features, appear to be quite fresh. That suggests that some of the deposits on the south pole got there relatively recently.

"That was a surprise," Deutsch said. "There hadn't really been any observations of ice in younger cold traps before."

If there are indeed deposits of different ages, the researchers say, that suggests they may also have different sources. Older ice could have been sourced from water-bearing comets and asteroids impacting the surface, or through volcanic activity that drew water from deep within the Moon.

But there aren't many big water-bearing impactors around in recent times, and volcanism is thought to have ceased on the Moon over a billion years ago. So more recent ice deposits would require different sources - perhaps bombardment from pea-sized micrometeorites or implantation by solar wind.

The best way to find out for sure, the researchers say, is to send spacecraft there to get some samples. And that appears to be on the horizon. NASA's Artemis program aims to put humans on the Moon by 2024, and plans to fly numerous precursor missions with robotic spacecraft in the meantime. Head, a study co-author and Deutsch's Ph.D. advisor, says studies like this one will help to shape those future missions.

"When we think about sending humans back to the Moon for long-term exploration, we need to know what resources are there that we can count on, and we currently don't know," Head said. "Studies like this one help us make predictions about where we need to go to answer those questions."

Research paper


Related Links
Brown University
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
Artemis, meet ARTEMIS: Pursuing Sun Science at the Moon
Greenbelt MD (SPX) Oct 08, 2019
By 2024, NASA will land astronauts, including the first woman and next man, on the Moon as part of the Artemis lunar exploration program. This won't be the first time NASA takes the name Artemis to the Moon though. Two robotic spacecraft orbiting the Moon today were initially known as ARTEMIS - short for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun. Since 2011, these spacecraft have been sending scientists valuable information about the lunar environm ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
Curiosity findings suggest Mars once featured dozens of shallow briny ponds

NASA's Mars 2020 rover tests descent-stage separation

NASA's Curiosity Rover finds an ancient oasis on Mars

UK eases sanctions on Moscow to allow activities related to joint space mission to Mars

MOON DAILY
Saturn most moon-rich planet in solar system after discovery of 20 new moons

Saturn surpasses Jupiter after the discovery of 20 new moons

New organic compounds found in Enceladus ice grains

'Snow-Cannon' Enceladus shines up Saturn's super-reflective moons

MOON DAILY
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts

MOON DAILY
Russia bestows medal on US astronaut in failed launch

Astronauts will spend much of October outside the space station

Deep space exploration isn't a far-fetched possibility

Raytheon to help Jet Propulsion Lab explore the universe

MOON DAILY
Scientists create a nanomaterial that is both twisted and untwisted at the same time

Physicists create world's smallest engine

DNA origami joins forces with molecular motors to build nanoscale machines

DARPA Announces Microsystems Exploration Program

MOON DAILY
Virgin Orbit selects RAF pilot as it plans satellite launch program

Jet taking off from Florida will launch NASA weather satellite

Sea Launch platform stripped of foreign equipment, ready to leave US for Russia

SwRI hypersonic research spotlights future flight challenges

MOON DAILY
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

MOON DAILY
SwRI, international team use deep learning to create virtual 'super instrument'

How do the strongest magnets in the universe form?

When debris overwhelms space exploitation

A filament fit for space - silk is proven to thrive in outer space temperatures









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.